MINERAL IDENTIFICATION

The Crystal Classes

Just as plane patterns can be described in terms of five unit cells, three dimensional patterns can be thought of as belonging to one of six classes. Just as there are two kinds of rectangular plane patterns, there are several types of three-dimensional pattern for each of the six crystal classes.

<table>
<thead>
<tr>
<th>Crystal Class</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **Cubic (Isometric)** | ISOMETRIC or CUBIC
All edges equal, all angles 90 degrees
Halite, Fluorite, Pyrite
Galena, Garnet, Magnetite
Gold, Copper, Diamond |
| **Tetragonal** | TETRAGONAL
Two edges equal, all angles 90 degrees. Square cross-section but different third dimension.
Zircon
Chalcopyrite |
| **Orthorhombic** | ORTHORHOMBIC
No edges equal, all angles 90 degrees. Like the shape of a cereal carton.
Olivine, Andalusite, Sillimanite
Some Amphiboles and Pyroxenes
Topaz, Sulfur |
| **Monoclinic** | MONOCLINIC
No edges equal, two angles 90 degrees. The shape obtained by knocking the ends out of a carton and skewing it.
Some Amphiboles and Pyroxenes
Micas
Gypsum, Epidote
Sugar also belongs to this crystal class. |
Triclinic

- **TRICLINIC**
- No edges equal, no angles 90 degrees
- Most Feldspars
- Kyanite
- Clay Minerals

What if you have one 90 degree angle, or two equal edges? It turns out that these contribute no extra symmetry and the crystal is still triclinic.

Hexagonal

- **HEXAGONAL**
- Angles of 60, 90, and 120 degrees.
- Ice (snowflakes)
- Quartz, Beryl
- Corundum, Hematite
- Calcite, Dolomite

From http://www.uwgb.edu/dutchs/EarthSC202Notes/minerals.htm