CONSERVING ELECTRIC ENERGY

INTRODUCTION

We use energy just by living. Our bodies use the energy contained in food when it reacts with the oxygen in the air. In addition, we use energy in our daily activities by driving cars, turning on lights, using a computer.

PURPOSE:

Students will gain an appreciation for our dependency on electricity and learn how regulating the rate of energy consumption makes the energy source last longer. In the model, students will analyze and contrast two graphs measuring the consumption of a resource under modified regulations and understand that regulating the rate of consumption of a resource allows it to last longer.

MATERIALS REQUIRED:

- Pen and paper
- Cookies or crackers (two per student). **Safety: Make sure cookies do not have nuts**
- Blackboard or overhead

PROCEDURE:

1) Begin a short discussion with the class with questions about activities in which they participate that are dependent on energy, how is electricity generated, how much coal or other natural resources are needed to generate the electricity they use.
   a) Discuss why the demand for electricity is increasing (more people, microelectronics).
   b) Start of list of items used that need electricity.
   c) Explain the difference between renewable and non-renewable resources.
   d) Is regulation important?
2) Model regulation as follows:
   a) Give each student a cookie or cracker, and then give them a signal to begin eating and tell them to raise their hand when they are finished.
      i) Count the hands raised every 15 seconds until all the cookies or cracker are eaten.
ii) Create a bar graph indicating how many students finished eating every 15 seconds.
b) Give each student another cookie or cracker with instructions that they can only take a bite when you tell them, "Take a bite."
i) Do this every 15 seconds and have the students raise their hand when they have finished the cookie.
ii) Count the hands raised after every 15 seconds and create a second bar graph to indicate the consumption rates. This graph usually shows that the overall cookie resources last longer.
c) Discuss the two graphs,
i) How are the two graphs the same?
ii) How are they different?
iii) Why did the cookie last longer when consumption was regulated?
iv) Can or should consumption be regulated?
   (1) If so, by whom?
   (2) Do individuals have a responsibility in conservation?

EVALUATION

1) Have students write a paragraph explaining their opinion about
   a) conserving energy resources,
   b) what measures can be taken,
   c) Should the government regulate individual or industrial consumption?

EXTENSION:

1) Students could research what regulations are now in place of the consumption of natural resources, including water consumption restrictions during a drought.
   a) What is being done to increase the amount of available energy resources?

DIFFERENTIATION:

1) Encourage students who are drawn to the graphing element of this lesson to graph the consumption data in various types of graphs (pie, line, bar, etc)

TEACHER NOTES

● This activity is available on line at
  http://teachcoal.org/lesson-plan-conserving-electric-energy
  o This is the website for the American Coal Foundation, and that organization has many other activities available on-line.
### Graphs of Eating Cookies

#### Free Eating

<table>
<thead>
<tr>
<th>Student 's Finished Eating Cookies</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>75</td>
<td>90</td>
</tr>
</tbody>
</table>

*Seconds*

#### Regulated Eating

<table>
<thead>
<tr>
<th>Student 's Finished Eating Cookies</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
</tr>
</thead>
</table>

Distributed by Women in Mining Education Foundation
Revised 2014
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>75</th>
<th>90</th>
<th>10</th>
<th>5</th>
<th>120</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Seconds</strong></td>
<td></td>
</tr>
</tbody>
</table>

Conserving electrical Energy
Science and social perspective
Grades 6-9

Distributed by Women in Mining Education Foundation
Revised 2014